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Directional coarsening in binary alloys during phase separation has been simulated by

means of the Monte-Carlo technique based on the spin-exchange Ising model in

two-dimensional squared lattices. A uniaxial interaction has been imposed on the

Hamiltonian of the standard Ising system in order to achieve directional coarsening of the

domained structure. Characterization of the domained structure with the snapshot patterns,

the spatial correlation function and the structure function, is also given. It has been found

that with time this system exhibits highly uniaxially anisotropic patterns of the domain

morphology and the correlation function, and also achieves a uniaxially textured structure

function. Under such a uniaxially anisotropic interaction, the dynamics of the system still

achieves a good agreement with the dynamic scaling hypothesis. Towards the later stage,

the kinetics of coarsening acquires a growth exponent of 1/3, the same as the well-known

value in the isotropic alloys.
1. Introduction
When a binary solid alloy is submitted into the immis-
cible gap of the phase diagram, phase separation pro-
ceeds inside the alloy via either the nucleation-and-
growth mechanism or spinodal decomposition, de-
pending on instability of the alloy. This process has
been of interest for decades, not only from the point of
view of technological applications, but also as a repre-
sentative example of first-order phase transitions
[1—6]. For a comprehensive review of several aspects
of this extensive field, readers are referred to the recent
review articles [2, 3]. Here, remarks are confined to
the morphology of domains and the general dynamics
of phase separation in alloys. In a system which ex-
hibits isotropic property of structures, the morpho-
logy of domains shows no considerable anisotropy
and the dynamics of phase separation can be quite
well described by the dynamic scaling hypothesis
[7—10], with the kinetic exponent of coarsening being
1/3, as predicted by the Lifshitz—Slyozov—Wagner the-
ory [11—16]. The experimental verifications of this
theory have always been made in those alloys which
are microstructurally isotropic, such as structural
glasses, liquid mixtures and also some metallic alloys
[2, 7, 17, 18]. Nevertheless, systematic demonstration
of the dynamic scaling concept has been presented in
the mode system by using computer simulations [16],
preferably by the Monte-Carlo technique [19,20]. The
standard Ising model with a conserved-order para-
meter, where the chemical potentials between the like-
pair and unlike-pair of species are the driving force,

and the configuration entropy is the resisting force to
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the chemical potential, takes part in modulating the
structure has been applied in the simulations and
represents one of the typical mode systems. As only
the nearest-neighbouring interaction of a species-pair
is involved, the isotropic morphology of domains will
be observed. The dynamic scaling hypothesis in these
systems has been widely approved.

However, in real alloy systems, the morphology of
domains during phase separation is considerably in-
fluenced by many factors, such as the anisotropy of
interfacial energy and the internal elastic energy aris-
ing during phase separation, due to the difference in
atomic size of the two species or the lattice symmetry
or the externally imposed load as well [21—25]. Gener-
ally speaking, growth of domains in such a system
prefers orientations with minimum energy (interfacial
energy, elastic softening, etc.). This is the so-called
‘‘directional coarsening’’ [26]. For the case of low
alloy composition, where isolated second phases are
formed, plate-like or rod-like patterns are observed in
elastically anisotropic cubic matrices, whereas an an-
isotropic modulating structure will form as the alloy
composition is high, in order to minimize the coheren-
cy strain energy [2]. On the other hand, under
a uniaxial external load, the directional coarsening
phenomenon will be observed in alloys, where the
precipitates exhibit a morphology consisting of either
plate-like structures perpendicular to, or rod-like
structures parallel to, the stress direction [27—29].
This phenomenon has been studied macroscopically
by continuum models [23]and simulated microsco-

pically by the Monte-Carlo (MC) method [26, 30, 31],
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revealing varied morphologies of domains and mech-
anical properties in some relatively simple mode sys-
tems.

Nevertheless, to the author’s knowledge, a system-
atic study of the dynamics of phase separation in such
a system which exhibits directional coarsening of do-
mains, has still not been carried out. In particular, the
dynamic scaling behaviour in this system has not been
checked. Experimentally, the currently applied small-
angle scattering (X-ray, neutron) techniques meet diffi-
culty in evaluating anisotropic dynamic data of phase
separation in the structurally anisotropic systems, in
order to question the validity of the dynamic scaling
concept. Instead, the Monte-Carlo simulation based
on a mode system would be a powerful tool for such
a purpose. This paper reports a study of this problem
by means of the Monte-Carlo technique. A simple
thermodynamic model is proposed and the study was
confined to the domain morphology and dynamic
scaling of phase separation in alloys with uniaxially
anisotropic interaction, where the directional coarse-
ning proceeds. Microscopically, this interaction may
be imposed by either an external field (load) or an
anisotropic potential between species. The dynamic
characteristics of directional coarsening in such a sys-
tem are shown and the dynamic scaling approach is
demonstrated.

2. Model and simulation procedure
As we are concerned mainly with the dynamics of
directional coarsening, we apply an Ising system
which is simple but general. Starting from a two-
dimensional squared lattice of size ¸]¸ with periodic
boundary conditions, we consider a binary system AB
with each site of the lattice occupied by either species
A or B. The alloy composition is C

0
"N

B
/(N

A
#N

B
),

where N
A

and N
B

are the numbers of A- and B-type
species in the lattice. The order parameter for the
present system is the local alloy composition and it is
conserved. Because only the chemical potential be-
tween two nearest-neighbouring species is considered
and denoted by J ('0), we can write the Hamiltonian
of this mode system as

H"!J +
Wi, jX

S
i
S
j

(1)

where Si, jT represents summation over all lattice sites
and S

i
"1 if site i is occupied with species A, other-

wise S
i
"!1. Clearly, as i"Sm, nT, we have j"

Sm!1, nT, Sm#1, nT, Sm, n!1T and Sm, n#1T.
When dealing with a uniaxially anisotropic interac-

tion to be imposed to the system defined by Equa-
tion 1, the simplest case is to add a competitive term
which is applied only along one axis of the lattice.
Here we choose the ½-axis. Then Equation 1 can be
rewritten as

H"!J +
Wi, jX

S
i
S
j
#r

y~y
+

Wi, jX

S
i
S
j

(2)

where r is a positive constant which scales the
uniaxially anisotropic interaction, y!y indicates that
the summation is done only along the ½-axis. r'0

indicates the imposition along the ½-axis of

1766
a uniaxially anisotropic interaction which is opposite
to the species-pair interaction scaled by J. This corres-
ponds to, for example, a stretching load imposed on
the system along the ½-axis. As r'0, the directional
coarsening is expected to proceed along the X-axis,
otherwise, it will proceed along the ½-axis. As
i"Sm, nT, we have j"Sm, n!1T and Sm, n#1T.
With respect to the elastic energy arising during phase
separation, one parameter r, may not be enough to
characterize the effect. However, as the first-order
approximation, it makes sense, because it has been
revealed that under an external load, the elastic energy
inside both phase-separating phases has a uniform
distribution, giving no considerable effect on the spe-
cies-pair interaction along the X-axis [26].

In such a simple system defined by Equation 2,
directional coarsening can proceed as suitable values
of J and r are given. The conventional spin-exchange
Ising model is applied to simulate the phase separ-
ation. We propose below a simulation procedure
which is similar to the Kawasaki mode. For given
system parameters C

0
, J and r, and an initial lattice

configuration where species A and B are imposed in
random, we calculate by Equation 2 the interaction
energy of a species at each site i with its four nearest
neighbours. A random number, R

1
, is generated, and

if R
1

falls into the ith interval, the species at site i is
chosen to exchange with one of its four nearest neigh-
bours in the next step. The exchanging probability
P
iaj

between two species at site i and one of its four
neighbours, j, is [31]

P
iaj

"exp(!*E
iaj

/k
B
¹)N

5
+
j/1

exp(!*E
iaj

/k
B
¹ )

(3)

where *E
iaj

represents the difference in the energy
over all the lattice before and after the i%j exchange,
k
B

is the Boltzmann constant and ¹ is temperature.
Here, as i"Sm, nT, we have j"Sm, nT, Sm!1, nT,
Sm#1, nT, Sm, n!1T and Sm, n#1T, respectively.
Then, another random number, R

2
, is generated

and an exchanging operation between species at sites
i and j is handled. This process is repeated until a given
number of species exchanges is reached. We apply
the unit mcs to scale the time for phase separation.
One mcs represents completed ¸]¸ species ex-
changes.

With respect to a highly anisotropic structure con-
sisting of two phases, some vectored dynamic quantit-
ies must be defined in order to characterize the
dynamics of phase separation. We define the spatial
correlation function g(x, y, t) and structure function
S(k

x
, k

y
, t) of the lattice at time t

g (x, y, t)"
1

¸]¸

L]L
+
m,n

(G (m, n, t)!C
0
)

](G(m#x, n#y, t)!C
0
) (4a)

S (k
x
, k

y
, t)"

1

¸]¸

L]L
+
x,y

g(x, y, t) exp(!ikr) (4b)
k"ik
x
#jk

y
, r"ix#jy (4c)



where G(m, n, t)"0 if site (m, n) is occupied by species
A, otherwise G(m, n, t)"1; x and y, k

x
and k

y
are the

coordinates and wave-vectors along X-axis and ½-
axis, respectively. From Equation 4, we can also define
the axially oriented and radially averaged correlation
functions and structure functions

g(x)"g(x, 0, t) (5a)

g(y)"g(0, y, t) (5b)

g (r)"
1

M
+

@r@yr(@r@`1

g (x, y, t) (5c)

r"ix#jy (5d)

S (k
x
)"S (k

x
, 0, t) (5e)

S (k
y
)"S (0, k

y
, t) (5f )

S (k
r
)"

1

N
+

@k@4k3:@k@`1

S (k
x
, k

y
, t) (5g)

k"ik
x
#jk

y
(5h)

where M is the number of discretized g (x, y, t) which
satisfies DrD4r(DrD#1 and N is the number of dis-
cretized S (k

x
, k

y
, t) which fall into range [DkD, DkD#1),

over all the lattice sites. g(r) and S(k
r
) represent a radial

average of g(x, y, t) and S (k
x
, k

y
, t), respectively.

In this paper, we will report our simulated results on
systems of C

0
"0.30, J"0.60k

B
¹ and r"0.50k

B
¹,

and C
0
"0.50, J"0.60k

B
¹ and r"0.50k

B
¹. The

former system exhibits isolated second phases during
phase separation and the latter shows inter-connected
domain structure. As a comparison, we have also
simulated phase separation in two systems of no
uniaxially anisotropic interaction, i.e. of C

0
" 0.30,

J"0.60k
B
¹ and r"0, and C

0
"0.50, J"0.60k

B
¹

and r"0. For each of these systems, four repeated
simulations starting from different seeds for random
number generator, have been made and the averages
of quantities over the four simulations are presented
below.

3. Simulated results and discussion
3.1. Morphology of domains
Fig. 1 presents the snapshot pictures at several times
for (a—d) a system of C

0
"0.30, J"0.60k

B
¹ and

r"0 (isotropic case), and (e—h) a system of
C

0
"0.30, J"0.60k

B
¹ and r"0.50k

B
¹ (uniaxially

anisotropic case). The time scales are given in the
caption. The solid spots are for B-type species and the
empty spaces are for A-type species. Clearly, for the
case of isotropic interaction (r"0), phase separation
proceeds via growth and coarsening of isotropic and
isolated second-phase domains. Splitting into two
small equiaxed domains of a large rod-like domain is
frequently observed during phase separation. The
growth of larger domains is compensated by shrink-
age of smaller domains. However, for the case of
r"0.50k

B
¹, even at the early stage, most domains, as

shown, exhibit rod-like morphology along the X-axis.

The directional coarsening has been clearly revealed.
Figure 1 The snapshot pictures of the domained structure at several
times for the systems (a—d) C

0
"0.30, J"0.60k

B
¹ and r"0 and

(e—h) C
0
"0.30, J"0.60k

B
¹ and r"0.50k

B
¹. The solid spots are

for B-type species and the open spaces for A-type species. The time
scales are: (a) t"0, (b) t"10 mcs, (c) t"900 mcs, (d) t"3400 mcs,
(e) t"0, (f ) t"100 mcs, (g) t"1000 mcs, (h) t"3400 mcs.

With the other characteristics of the morphological
evolution remaining similar to the case of r"0, the
coarsening kinetics are shown to be much faster than
the case of r"0, characterized by coarser domains
and larger domain spacing. This is quite interesting
because compared to the system of r"0, the system
of r"0.50k

B
¹ has a lower average binding energy for

each species and it should acquire a finer microstruc-
ture. Nevertheless, owing to the conserved-order para-
meter, evolution of the uniaxially oriented rod-like
domains always results in the formation of coarser
microstructure than that in the isotropic case. This
indicates, for example, that a uniaxially stretching
load on the system will result in faster directional
coarsening of the microstructure.

Fig. 2 shows the snapshot pictures at several times

for (a—d) a system of C

0
"0.50, J"0.60k

B
¹ and
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Figure 2 The snapshot pictures of the domained structure at several
times for the systems (a—d) C

0
"0.50, J"0.60k

B
¹ and r"0 and

(e—h) C
0
"0.50, J"0.60k

B
¹ and r"0.50k

B
¹. The solid spots are

for B-type species and the open spaces for A-type species. The time
scales are: (a) t"0, (b) t"100 mcs, (c) t"1100 mcs, (d)
t"3800 mcs, (e) t"0, (f ) t"100 mcs, (g) t"900 mcs, (h)
t"3900 mcs.

r"0 and (e—h) a system of C
0
"0.50, J"0.60k

B
¹

and r"0.50k
B
¹. Although both systems achieve

inter-connected domained structure during phase sep-
aration, the morphology of the second-phase domains
in the uniaxially anisotropic system (r"0.50k

B
¹) is

stripe-like along the X-axis. The uniaxial stripes are
quite wavy and become increasingly coarser by a pro-
cess where the neighbouring stripes first touch and
then join, reducing the number of stripes in the system.
The kinetics of coarsening for the case of r"0.50k

B
¹

is much faster than the case of r"0, similar to the
case shown in Fig. 1.

Fig. 3 gives the averaged binding energy, E, for each
species in the lattice as a function of time, for several
systems. In the very beginning stage, E shows a rapid

growth and then slows down considerably. The time
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Figure 3 The averaged binding energy for each species in the lattices
as a function of time. (a) C

0
"0.30 and (b) C

0
"0.50. The values of

J and r are given.

dependence of E in the later stage can be fitted
with a power function. For all systems shown in Fig. 3,
the exponent has been found to be 0.04. As pointed
out earlier, E for the cases of r"0.50k

B
¹ is lower

than that for the cases of r"0, but a coarser-
domained structure forms in the former cases. Our
simulations also show that with increasing r, the
uniaxially anisotropy of the domained structure also
increases.

3.2. Correlation functions
Currently, the domain morphology and dynamics of
phase separation can be quantitatively characterized
by the spatial correlation function. The size, distribu-
tion and anisotropy of the domained structure can be
estimated from the correlation function analysis. As
a function of the lattice distance R(t) which starts from
zero, the correlation function shows oscillation
around zero. The first zero point, R(t)"R

1
(t), scales

the domain size and the second zero point,
R(t)"R

2
(t), scales the domain spacing (i.e. modula-

ting periodicity). Here, we only look at the uniaxial
and radially averaged correlation functions g (x), g(y)
and g(r). The first zero points for these functions are
denoted by R

x
(t), R

y
(t) and R

r
(t), respectively.

Figs 4 and 5 present, respectively, the water-fall
plots of the uniaxial function g (x) with time, for the
isotropic systems (r"0) and the uniaxially aniso-

tropic systems (r"0.50k

B
¹). As r"0 (Fig. 4a where



Figure 4 The water-fall plots showing the X-axially oriented spatial
correlation function g(x) against the lattice distance x at different
times, for the systems (a) C

0
"0.30, J"0.60k

B
¹ and r"0 and

(b) C
0
"0.30, J"0.60k

B
¹ and r"0.50k

B
¹. The arrows indicate

the time flow.

Figure 5 The water-fall plots showing the X-axially oriented spatial
correlation function g(x) against the lattice distance x at different
times, for the systems (a) C

0
"0.50, J"0.60k

B
¹ and r"0 and (b)

C "0.50, J"0.60k ¹ and r"0.50k ¹. The arrows indicate the

0 B B

time flow.
C
0
"0.30 and Fig. 5a where C

0
"0.50), g (y) and g(r)

show similar patterns as g (x) and so we look only at
g(x). At any fixed time, against the lattice distance
x, g (x) decreases rapidly from a positive value and
passes through g (x)"0, and then starts oscillating.
With time, R grows gradually, indicating coarsening
of the domained structure. The oscillation pattern of
g(x) with x is relatively irregular at the early stage and
evolves into relatively regular and roughly periodic
ones, by a process whereby some peaks and valleys
gradually decay and finally disappear, revealing that
the distribution of the two-domained phases becomes
more and more uniform. However, as the uniaxial
anisotropy is involved, the evolution of the correla-
tion function g (x) (Fig. 4b where C

0
"0.30 and

Fig. 5b where C
0
"0.50) becomes much faster than

g(y) and the symmetry is broken, demonstrating
directional coarsening and indicating the formation
of uniaxially anisotropic domained structure. Growth
of R

x
is also much more rapid than that of R

y
.

No periodic oscillation of g(x) for the system of
C

0
"0.50 and r"0.50k

B
¹ can be identified here,

because no structure modulation is induced along the
X-axis as the periodic boundary conditions are
applied.

3.3. Structure function
The structure function of the phase-separating system
represents the spatial correlation of composition in
the scattering geometry. The two-dimensional profiles
and equal-height contours of S(k

x
, k

y
) at t"3400 mcs

for the system of C
0
"0.30 and r"0, and the system

of C
0
"0.30 and r"0.50k

B
¹, are given in Fig. 6a

and b, respectively. For the case of r"0, clearly the
structure function is roughly isotropic in the wave-
vector space, and as a function of any wave-vector
k"ik

x
#jk

y
which passes through k"0, the struc-

ture function shows a similar pattern of symmetric
double-peaks around k"0. This is in agreement with
those results presented earlier. However, for the case
of r"0.50k

B
¹, the two-dimensional profile of

S(k
x
, k

y
) exhibits two sharp peaks along the line of

k"jk
y
, whereas the peaks along k"ik

x
are quite

weak, as shown in the equal-height contour. This is
a typical profile of the structure function for a system
exhibiting strongly textured structure along the X-
axis, as shown in Fig. 1, demonstrating again that
directional coarsening proceeds in the domained
structure. The double peaks along k"jk

y
for the

case of r"0.50k
B
¹ are much higher and sharper

than those displayed in Fig. 6a, indicating that the
½-axially oriented structure modulation in the
case of r"0.50k

B
¹ is more perfect than arbi-

trarily oriented structure modulation in the case of
r"0.

For the systems of C
0
"0.50 and r"0, and

C
0
"0.50 and r"0.50k

B
¹, the two-dimensional pro-

files and equal-height contours of the structure func-
tion at t"3400 mcs are shown in Fig. 7a and b, re-
spectively. Similar characteristics to those shown in
Fig. 6 are revealed. The peaked pattern of S (k , k )
x y
along k"ik

x
is too hard to identify, owing to the
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Figure 6 The two-dimensional profiles and equal-height contours
of the structure function at t"3400 mcs, for the systems (a)
C

0
"0.30, J"0.60k

B
¹ and r"0 and (b) C

0
"0.30, J"0.60k

B
¹

and r"0.50k
B
¹.

fact that here no structure modulation occurs be-
cause of the applied periodic boundary conditions.
The two peaks shown in Fig. 7b are much sharper
than those shown in Fig. 6b, owing to more perfect
structure modulation along the ½-axis for the former
case.

3.4. Dynamic scaling
A dynamic scaling state means that all structural
properties of the phase-separating system which are
rescaled by the characteristic length of the domained
structure, hold stationary with time except the charac-
teristic length itself. This is a crucial property for the
first-order transitions and has been verified in many
isotropic systems (r"0). Because here we are dealing
with the uniaxially anisotropic system, the dynamic
scaling should be orientation-dependent. Because of
the conservation property of the order parameter, the

scaling transforms for the correlation functions can be

1770
Figure 7 The two-dimensional profiles and equal-height contours
of the structure function at t"3400 mcs, for the systems (a)
C

0
"0.50, J"0.60k

B
¹ and r"0 and (b) C

0
"0.50, J"0.60k

B
¹

and r"0.50k
B
¹.

written [16]

g"

R(t)

R
1
(t)







g (x)Pg (g), R(t)"x and R
1
(t)"R

x
(t)

g(y)Pg (g), R(t)"y and R
1
(t)"R

y
(t)

g (r)Pg (g), R(t)"r and R
1
(t)"R

r
(t)

(6)

For the systems of C
0
"0.30 and C

0
"0.50, as

r"0.50k
B
¹ the correlation functions at different

times, rescaled by following Equation 6 are presented
in Figs 8 and 9, respectively. As C

0
"0.30, it is clearly

shown that by scaling transformation, all data of
g(x), g (y) and g (r) after t"400 mcs fall quite well on
to the same curves g (g), respectively, demonstrating
that the dynamic scaling is followed by the directional
coarsening. Similarly, for the case of C

0
"0.50, after

t"400 mcs, the system also reaches the dynamic scal-

ing state. Note here that the rescaled g(x) at different



Figure 8 The spatial correlation functions (a) g(x) , (b) g(y) and (c)
g(r) at several times, rescaled by the scaling transform g"R (t)/
R

1
(t) , for the system of C

0
"0.30, J"0.60k

B
¹ and r"0.50k

B
¹.

The time scales are: (h) 400 mcs, (C) 1000 mcs, (n) 1600 mcs, (£)
2200 mcs, (e) 2800 mcs, ()) 3400 mcs.

times show worse consistency to each other as g'3.
This is obviously due to the statistical errors induced
by the periodic boundary conditions. Therefore, we
can conclude that towards the later stage, the direc-
tional coarsening in a uniaxially anisotropic system
can acquire a dynamic scaling state.

3.5. Coarsening exponent
After demonstrating the dynamic scaling property, we
return to examine another important property of the
directional coarsening, i.e. the kinetic exponent of
coarsening. Bearing in mind the uniaxial anisotropy of

the domained structure, it is necessary to check separ-
Figure 9 The spatial correlation functions (a) g(x) , (b) g(y) and (c)
g(r) at several times, rescaled by the scaling transform g"R (t)/
R

1
(t) , for the system of C

0
"0.50, J"0.60k

B
¹ and r"0.50k

B
¹.

The time scales are: (h) 900 mcs, (C) 1500 mcs, (n) 2100 mcs, (£)
2700 mcs, (e) 3300 mcs, ()) 3900 mcs.

ately the orientation-dependent exponents. These ex-
ponents are evaluated by plotting the axially oriented
characteristic scales of the domained structure, R

x
, R

y
and R

r
against time via a power function. The results

are given in Fig. 10, where the spots represent the
simulated data and the lines (solid, dashed and dot)
are the best fits by the power function R

1
(t)\t1@3. For

all cases, the simulated kinetics of coarsening follows
quite well the Lifshitz—Slyozov—Wagner law [2]

R
1
(t)"R

0
#at1@3, R

0
'0, a'0 (6)

Clearly, the early stage’s deviations of the simulated
data from the lines come from the constant term of

Equation 7. From Fig. 10 we see that there always
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Figure 10 The axially oriented characteristic lengths (h) R
x
(t) and

(C) R
y
(t) , and (n) the radially averaged characteristic length R

r
(t), as

functions of time, for the systems (a) C
0
"0.30, J"0.60k

B
¹ and

r"0.50k
B
¹ and (b) C

0
"0.50, J"0.60k

B
¹ and r"0.50k

B
¹.

Best fittings of (—) R
x
(t) , (- - -) R

y
(t) and (2) R

r
(t) , following the 1/3

power function (see text), are shown.

exists R
x
(t) 'R

r
(t) 'R

y
(t) and towards the later

stage, a constant ratio of R
x
(t) over R

y
(t) is achieved,

indicating that the shape of domains may remain
unchanged in the later stage. This is reasonable, when
considering the dynamic scaling and Equation 7.

From all the results presented above, we may con-
clude that phase separation in a system of uniaxially
anisotropic interaction does not exhibit fundamentally
different dynamic properties from those for the iso-
tropic system, although these properties are shown to
be orientation-dependent.

4. Conclusion
The dynamics of directional coarsening in binary
alloys with uniaxially anisotropic interaction has been
studied by means of the Monte-Carlo technique. The
time evolution of the morphology, the spatial correla-
tion function and the structure function of the
domained structure during phase separation have
been presented in detail. It has been shown that be-
cause of the uniaxially anisotropic interaction, the
system achieves uniaxial anisotropic morphology of
domains and directional coarsening. The kinetics of
coarsening is accelerated, compared to the isotropic

system. The high pattern symmetry of the spatial cor-
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relation function and structure function of the
domained structure are broken due to the directional
coarsening. However, the dynamic scaling analysis
reveals that towards the later stage, either the axially
oriented correlations or their radial averages exhibit
the dynamic scaling property, demonstrating the
validity of the dynamic scaling hypothesis in ap-
proaching the dynamics of directional coarsening.
A kinetic exponent of 1/3 for the directionally coarse-
ned domain structure, independent of the orientation,
is achieved, agreeing with prediction of the Lifshitz—
Slyozov—Wagner theory.
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